中国燃烧器网【燃友会@Chinaburner.com】中国燃烧机行业技术交流平台

 找回密码
 立即注册

扫一扫,极速登录

QQ登录

只需一步,快速开始

手机号码,快捷登录

中小型传统燃气锅炉低氮排放的一种有效解决方案——普通燃烧机全预混表面燃烧改造

查看数: 10656 | 评论数: 11 | 收藏 0
关灯 | 提示:支持键盘翻页<-左 右->
    组图打开中,请稍候......
发布时间: 2015-4-2 17:53

正文摘要:

本帖最后由 junjiehuang 于 2015-4-2 18:17 编辑 中小型传统燃气锅炉低氮排放的一种有效解决方案     ——普通燃烧机全预混表面燃烧改造 一、低氮燃烧的必要性 二、低氮燃烧机理及技术研究 三、 ...

回复

junjiehuang 未绑定微信 发表于 2015-4-2 17:55:32
本帖最后由 junjiehuang 于 2015-4-2 18:00 编辑

二、低氮燃烧机理及技术研究:

      1、甲烷-空气燃烧过程氮化学基本原理

燃烧理论将NOx的生成分为热力型NOx(Thermal NOx)、快速型NOx(Prompt NOx)和燃料型NOx(Fuel NOx)。天然气中含氮量较低,因此,燃料型NOx不是其主要的控制类型。热力型NOx是指燃烧用空气中的N2在高温下氧化生成NOx。关于热力型NOx的生成机理一般采用捷里道维奇机理:当温度低于1500℃时,热力NOx的生成量很少;高于1500℃时,温度每升高100℃,反应速度将增大6~7倍。在实际燃烧过程中,由于燃烧室内的温度分布是不均匀的,如果有局部高温区,则在这些区域会生成较多的NOx,它可能会对整个燃烧室内的NOx生成起关键性的作用。快速型NOx在碳氢燃料燃烧且富燃料的情况下,反应区会快速生成NOx。在实际的燃烧过程中各种因素是单独变化的,许多参数均处于不断的变化中,即使是最简单的气体燃料的燃烧,也要经历燃料和空气相混合,燃烧产生烟气,直到最后离开炉膛。炉膛的温度、燃料和空气的混合程度、烟气在炉内停留时间等这些对NOx排放有较大影响的参数均处于不断的变化之中。

燃料和空气混合物进入炉膛后,由于受到周围高温烟气的对流和辐射加热,混合物气流温度很快上升。当达到着火温度时,燃料开始燃烧,这时温度急剧上升到近于绝热温度水平。同时,由于烟气与周围介质间的对流和辐射换热,温度逐渐降低,直到与周围介质温度相同,也即烟气边冷却边流过整个炉膛。由此可见,炉内的火焰温度分布实际上是不均匀的。通常,离燃烧器出口一定距离处的温度最高,在其前后的温度都较低,即存在局部高温区。由于该区的温度要比炉内平均温度水平高得多,因此它对NOx生成量有很大的影响:温度越高,NOx生成量越多。因此,在炉膛中,为了抑制NOx的生成,除了降低炉内平均温度外,还必须设法使炉内温度分布均匀,避免局部高温。

2、国内外燃气工业锅炉NOx控制技术现状

现有低NOx燃烧技术主要围绕如何降低燃烧温度,减少热力型NOx生成开展的,主要技术包括分级燃烧、预混燃烧、烟气再循环、多孔介质催化燃烧和无焰燃烧。

    (1)燃料分级燃烧或空气分级燃烧

热力型NOx生成很大程度上取决于燃烧温度。燃烧温度在当量比为1的情况下达到最高,在贫燃或者富燃的情况下进行燃烧,燃烧温度会下降很多。运用该原理开发出了分级燃烧技术。

空气分级燃烧(见图4-1)第一级是富燃料燃烧,在第二级加入过量空气,为贫燃燃烧,两级之间加入空气冷却以保证燃烧温度不至于太高。燃料分级燃烧与空气分级燃烧正好相反,第一级为燃料稀相燃烧,而在第二级加入燃料使得当量比达到要求的数值。这两种方法最终将会使整个系统的过量空气系数保持一个定值,为目前普遍采用的低氮燃烧控制技术。

(2)贫燃预混燃烧技术

预混燃烧是指在混合物点燃之前燃料与氧化剂在分子层面上完全混合,其工艺流程见图4-2。对于控制NOx的生成,这项技术的优点是可以通过当量比的完全控制实现对燃烧温度的控制,从而降低热力型NOx生成速率,在有些情况下,预混燃烧和部分预混可比非预混燃烧减少85%—90%的NOx生成。另外,完全预混还可以减少因过量空气系数不均匀性所导致的对NOx生成控制的降低。但是,预混燃烧技术在安全性控制上仍存在未解决的技术难点:一是预混气体由于其高度可燃性可能会导致回火;二是过高的过量空气系数会导致排烟损失的增加,降低了锅炉热效率。

(3)外部烟气再循环和内部烟气再循环技术

燃烧温度的降低可以通过在火焰区域加入烟气来实现,加入的烟气吸热从而降低了燃烧温度。通过将烟气的燃烧产物加入到燃烧区域内,不仅降低了燃烧温度,减少了NOx生成;同时加入的烟气降低了氧气的分压,这将减弱氧气与氮气生成热力型NOx的过程,从而减少NOx的生成。根据应用原理的不同,烟气再循环有两种应用方式,分别为外部烟气再循环与内部烟气再循环。

对于外部烟气再循环技术来说,烟气从锅炉的出口通过一个外部管道,重新加入到炉膛内。根据R&Oslash;kke等的研究,外部烟气再循环可以减少70%的NOx生成。图4-3为外循环烟气的结构示意图。外循环比例对NOx控制效果也有较大影响,随着外循环比例的增加NOx降低幅度也更加明显,但循环风机电耗也将增加。

对于内部烟气再循环,烟气回流到燃烧区域主要通过燃烧器的气体动力学。内部烟气再循环主要通过高速喷射火焰的卷吸作用或者旋流燃烧器使得气流产生旋转达到循环效果。图4-4a在燃烧器头部加了一个循环杯,中间通过高速气流,由于压力差使得烟气重新加入到燃烧区域中。图4-4b通过高速气流喷嘴达到循环效果。

通过运用一个旋流器或者切向气流进口来生成一个有切向速度的气流,旋转过程即产生了涡流。涡流的强度可以用一个无量纲数旋流度S表示。当旋流度超过0.6,气流中将会产生足够的径向和轴向压力梯度,这会导致气流反转,在火焰中心产生一个环形的再循环区域。中心再循环区域的高温气体将回到燃烧器喉部,这确保了对冷的未燃烧气体的点火,同时通过降低火焰温度和降低氧气分压减少NOx生成。

(4)多孔介质催化燃烧

降低火焰温度的另一个办法就是尽可能快和多的加强火焰对外的传热。Zepter在燃烧器内增加了多孔介质(PIM),使得燃烧反应发生在多孔介质内,这样从燃烧器到周围环境的辐射和对流换热就被加强了。实验表明,使用PIM燃烧器的燃烧温度低于1600K,NOx生成量在5-20ppm左右。

PIM燃烧器还可以在燃烧器入口处添加催化剂,这样燃料分子和氧化剂分子就会以一个比较低的活化能在催化剂表面进行反应。这样反应温度相比于同类的燃烧要更低。由于反应过程只在催化剂表面进行,不会产生NOx,这样催化燃烧的NOx生成可以降至1ppm。催化燃烧的缺点就是必须保证活性表面在一个比较低的温度下不被氧化或蒸发,且催化剂造价相对较高,难以得到工业化应用。

(5)无焰燃烧

传统的火焰燃烧分为预混燃烧和扩散燃烧,其主要特点包括:①燃料与氧化剂在高温下反应,温度越高越有助于火焰的稳定;②火焰面可视(甲烷燃烧的火焰一般为蓝色,有碳烟产生时为黄色);③大多数燃料在很薄的火焰层内完成燃烧,但是燃烧反应会在下游的不可见的区域内完成。

为了建立一个火焰,燃料与氧化剂之比必须在可燃极限之内,同时需要点火装置。一般情况下,火焰在点燃以后一般自己充当点火器,对来流进行点火。这就需要足够高的火焰温度来达到最小点火能量,但是高的火焰温度会使得NOx生成增加。

Wuenning J.G等在实验室内观察到了一种无焰的燃烧,如图4-5所示。在炉内温度为1000℃,空气预热到650℃的情况下,燃料在无焰的情况下燃烧,一氧化碳低于1ppm,NOx接近于零排放。

为了稳定火焰,可视的燃烧过程需要在燃烧后产生很强的烟气回流;对于无焰燃烧,烟气回流发生在燃烧之前,甚至可能在燃烧器当中,这样再循环的烟气加热了预混的燃料,降低了炉膛温度,扩大了反应区域。

无焰燃烧火焰分布均匀,燃烧温度低,同时羟基生成少,这使得NOx产生更少。无焰燃烧需要以下条件:①分别射入高动量的空气和燃料流;②大量内部的或者外部的高温燃烧产物循环;③热量的快速移除,以保证炉膛内各处均未达到绝热火焰温度。无焰燃烧不需要传统的稳燃装置或条件(比如强涡)。

junjiehuang 未绑定微信 发表于 2015-4-2 18:02:01
三、全预混表面燃烧技术降低NOx排放的可行性及实现方式
    “全预混金属纤维表面燃烧技术”将空气和天然气在进入燃烧室之前按比例完全混合,使天然气充分燃烧的同时,降低火焰温度以减少NOx的产生,使NOx在运行工况下最高排放可控制到30ppm以下;同时还降低空气的需求量,提高烟气的露点,使烟气尽早进入冷凝阶段,以进一步提高燃烧效率。

    国外的金属纤维燃烧器产品已经有多年的应用经验,并且配套了铸铝等高效率的换热结构,排放效果毋庸置疑;但也存在必须在其配套换热器中才能达到排放效果的弊端;在低氮排放要求下,传统的燃烧机面临必须更换的尴尬局面,而昂贵的新装备无疑也带来了不菲的使用成本。

    适应市场的需要,湖南惠同依托“金属纤维耐高温织物专利技术”,根据中国国情推出了“普通燃烧机的低氮燃烧改造方案”。普通燃烧机只需通过加装惠同金属纤维炉头,不需要大的结构改动,燃烧机的控制也不需要任何改变,就能实现低氮表面燃烧。经过实践验证,这是一种实现低氮燃烧非常有效的方案,也是中小型传统燃气锅炉低氮排放改造的高性价比方案。

---------------------------------------------------------------------------------------
未完,待续,有兴趣的朋友请关注后续补充信息。
junjiehuang 未绑定微信 发表于 2015-5-18 16:36:08
本帖最后由 junjiehuang 于 2015-5-18 16:47 编辑

NOx排放低于60mg/m3(折算到空气过剩系数为1时数值),有效方案之一:
1、炉头改造为金属纤维表面燃烧方式;
2、调整空燃比,使空气过剩系数达到1.36以上;
3、适当增加二次换热装置(省煤器),提高锅炉热效率;
4、适当增加锅炉数量,弥补单台锅炉出力下降对供热能力的影响。

需要特别注意的事项:
1、环保部门应加强监督,避免检查时调高空气系数达到相关标准要求,过后又调低空气过剩系数来降低燃气消耗;
2、必须增加空气过滤装置,定期检查空气过剩系数(或炉头背压),以保证空气过剩系数达到降低NOx排放的要求。

锅炉出力的影响:
根据已有的经验数据,锅炉出力主要受制于最大供风量,一般可以用A/B*100%的数值来估算出力的比率大小。
其中,A是原锅炉燃烧器空气过剩系数,B>=1.36。
如果原先锅炉的空气过剩系数为1.16,则出力不超过原出力的1.16/1.36*100%=85%。
如果空气过剩系数调到更大,则相应出力比率越低。
junjiehuang 未绑定微信 发表于 2015-4-2 20:57:33
本帖最后由 junjiehuang 于 2015-4-2 21:02 编辑

北京市燃气锅炉氮氧化物排放标准全国率先降低至60mg/Nm3以下

天然气低氮燃烧标准呼之欲出,专家解读NOx排放新标准

http://www.cglngl.com/news/news0034.html

锅炉大气污染物排放标准


http://www.cglngl.com/news/news0032.html




junjiehuang 未绑定微信 发表于 2015-4-2 18:32:13
“金属纤维表面燃烧技术”应用案例:
    山西崇光科技有限公司和山西崇光冷凝供热设备有限公司是国内唯一采用欧洲进口大型商用铸铝换热器总成进行商用全预混低氮燃烧冷凝锅炉产品生产的企业。
    崇光公司对商用天然气全预混低氮燃烧冷凝供热技术的引进和应用在国内掌握技术制高点,与欧洲行业领袖直接合作,在国内独家引进目前世界唯一的独立大型铸铝冷凝换热器总成以及大功率全预混变频风机等核心技术,结合中国应用环境研发的自主品牌独立大型商用冷凝锅炉,使锅炉单燃烧室输出功率达到1000KW,与欧美主流商用冷凝锅炉核心配置一致,其产品填补了国内空白。
    为了使天然气全预混低氮燃烧冷凝供热技术这一全球领先的燃气供热技术更好地适应中国的应用环境,服务于中国的能源结构调整,使天然气这一清洁能源的使用更清洁、更环保,崇光公司与荷兰贝卡尔特公司、德国EBM公司、德国冬斯公司等正在合作建立商用全预混低氮冷凝供热技术中国应用研发中心。
http://www.cglngl.com/
快速回复 返回顶部 返回列表